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Abstract

Combined thermocapillary and natural convection in rectangular containers is investigated experimentally and

theoretically. The fluid is heated by a thin wire placed along the free surface. In the parametric range investigated

herein, buoyancy alters the thermocapillary flow significantly. The flow field is confined to a relatively small region near

the free surface due to thermal stratification. The vertical dimension of the flow cell is determined by a scaling analysis,

and the scaling law is shown to agree well with the results from the numerical simulations. The experiment shows that

the steady two-dimensional flow field becomes oscillatory and three-dimensional beyond a certain temperature dif-

ference. The oscillatory flow field is described based on a flow visualization and temperature measurement. The critical

temperature difference for the onset of oscillations is determined under various conditions. It is discussed that the flow

becomes oscillatory when the convection in the flow cell becomes sufficiently large. A parameter is derived to represent

this convection including the effect of stratification, which is shown to correlate the experimentally determined critical

conditions well.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Since the early seventies much attention has been

given to oscillatory thermocapillary convection under

various conditions. The past experimental work on the

subject has recently been reviewed [1]. Many experi-

ments have been performed in the so-called half-zone

configuration, mainly with high Prandtl number fluids.

Although emphasis is on thermocapillary flow, buoy-

ancy cannot be neglected in some experiments per-

formed in normal gravity. The main objective of the

present work is to investigate the interaction between

thermocapillary flow and buoyancy.

The present experiment is performed in rectangular

containers. Steady flows due to combined thermocapil-

lary and buoyant driving forces in rectangular cavities or

slots have been investigated experimentally and theo-

retically by several investigators (e.g. [2–5]). Pertinent to

the present work is the work by Schwabe and Metzger

[6], in which the top portion of the fluid layer is sub-

jected to a larger temperature difference than the bulk

region. In this situation they showed that the flow is

active mostly in the region near the free surface. No

oscillations were reported in their work. Oscillatory

flows in rectangular cavities have been investigated ex-

perimentally [7,8]. It is known from these studies that

the steady two-dimensional flow in a cavity changes to

steady, three-dimensional flow after the first instability,

and then, with a further increase in the imposed tem-

perature difference, it transitions to oscillatory flow. In

the present work, the fluid is heated locally by a thin

wire placed along the free surface. This heating pro-

motes thermal stratification as in the work by Schwabe

and Metzger [6], but without the presence of a large hot

wall it is found that the flow becomes oscillatory at a
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relatively low Reynolds number. Unlike the cavity

configuration, the steady two-dimensional flow transi-

tions directly to oscillatory flow. The nature of the os-

cillatory flow is also different from that found in

rectangular cavities.

In addition to the experiment, the basic flow field is

investigated numerically, especially concerning the ex-

tent of the thermal stratification. Based on the experi-

mental and numerical information, the oscillation

mechanism is discussed. It is shown that the stratifica-

tion plays an important role. A parameter is derived to

specify the critical condition for the onset of oscillations.

2. Experiments

Fig. 1 shows a schematic view of the test section.

Liquid is contained in a rectangular container and is

heated along the top free surface by a thin wire at the

container center. The sidewalls are cooled to maintain a

uniform temperature. Silicone oils with kinematic vis-

cosities of 2 and 5 centistokes (cSt) are used to obtain

proper parametric ranges. The test cell consists of two

copper end walls, which have cooling channels inside,

two clear Plexiglas sides and a Plexiglas bottom. Two

different container sizes are used, one with width L ¼ 1

cm and length W (the dimension in the spanwise direc-

tion of the heater) equal to 6 cm, and the other with

L ¼ 0:75 cm and W ¼ 6 cm. The depth of the test fluid is

variable. The temperatures of the copper walls are

controlled by constant temperature water circulation.

The fluid is heated by a nichrome wire with a 0.65 mm

diameter. The wire is submerged in the liquid with its

top just touching the free surface from the inside (Fig.

1).

A 0.05 mm diameter copper-constantan thermocou-

ple with its fast response is used for measuring the tem-

perature distribution and the root-mean-square (RMS)

temperature oscillation level inside the fluid. The re-

sponse time is 0.01 s in still water, which is small enough

for the present experiment in which typical frequencies

are from 0.1 up to 0.7 Hz. The thermocouple is rigid

enough so that its position is not influenced by the flow.

It is held by a x–y traversing holder controlled by two

Nomenclature

Ar liquid layer aspect ratio, H=L
DH diameter of heating wire

Gr Grashof number, gbDTL3=m2

g gravitational acceleration

H liquid layer depth

H � thermal penetration length scale

Hr heater ratio, DH=2L
L container half-width

Ma Marangoni number, rTDTL=la
Macr critical Marangoni number

Ma� modified Marangoni number, MaðrT=
qgbL2Þ2=3

Ma�cr critical modified Marangoni number

Nu Nusselt number

Pr Prandtl number, m=a
Rr Reynolds number, rTDTL=lm
T temperature

TC cold wall temperature

TH heating wire temperature

U0 maximum velocity in heated region

Ur characteristic velocity of flow

ðu; vÞ velocity components

W container dimension normal to x–y plane

ðx; yÞ coordinate system defined in Fig. 1

a thermal diffusivity

b volumetric expansion coefficient

DT imposed temperature difference, TH � TC
DTcr critical temperature difference

f vorticity, ov=ox� ou=oy
h0 root-mean-square temperature oscillation

level

l fluid dynamic viscosity

m fluid kinematic viscosity

q fluid density

rT temperature coefficient of surface tension

wmax maximum stream function, non-dimension-

alized by rTDTL=l

Fig. 1. Schematic of test configuration and coordinate system.
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screws, whose moving scales are measured up to 0.2 mm

in the x-direction and 0.4 mm in the y-direction. In order

to measure the temperature of the wire heater, a 0.05 mm

diameter thermocouple is attached to the wire at the

middle. Two 0.25 mm diameter thermocouples are used

for monitoring the temperature of each endwall.

The onset of oscillations is detected by the thermo-

couple in the fluid and also by flow visualization. The

thermocouple probe is placed where the temperature

oscillation level has been found to be the largest. Tem-

perature measurements are made with a potentiometer

and an Omega-CJ thermocouple cold junction com-

pensator. The thermocouple used for measuring the

frequency and RMS oscillation level of the temperature

inside the silicone oil is connected to an amplifier with an

amplification factor of 1000, and its output is sent to an

oscilloscope or a RMS meter. Flow visualization is

carried out by adding alumina particles (1–10 lm di-

ameter) to the flow and observing their motions with a

microscope and/or a CCD camera.

Since the part of the thermocouple within a few mm

from the junction is sensitive to the temperature varia-

tion, the thermocouple is placed under the surface along

a constant temperature line to reduce the error in tem-

perature measurements. The accuracy of the tempera-

ture measurement is estimated to be within 7% of DT .
The critical temperature difference is reproducible within

�10%.

3. Ranges of parameters

The important dimensionless parameters for the

steady flow are: surface tension Reynolds number (Rr),
Prandtl number (Pr), Grashof number (Gr), aspect ratio

(Ar), relative heater size (Hr). Marangoni number (Ma¼
RrPr) is also used. The parametric ranges covered in

the present experiment are: Ma < 2� 104, Gr < 7� 104,

Ar ¼ 0:3–1.5, and Hr ¼ 0:033 and 0.043. Pr ranges from

25 to 29 for the 2 cSt fluid and from 47 to 70 for the 5 cSt

fluid. The fluid viscosity is evaluated at the average

temperature of TH and TC.
The size of the meniscus next to the cold wall is about

2 mm. When the contact line is anchored at the top edge

of the cold wall, we can adjust the meniscus size by

adjusting the amount of fluid in the container. It is

found that the flow and oscillation phenomenon are not

appreciably affected by the meniscus size and shape, so

we neglect its effect in the present work. The ratio of

container length W to liquid depth H varies between 4

and 27 in the experiment, although many data are taken

when the ratio is about 6. With the W =H ratio of 4, the

side wall effect may not be negligible, but as will be

shown later, the oscillation phenomenon is not affected

by this ratio even when it is near 4. Therefore, we neglect

its effect in the present work.

If we compare the characteristic buoyancy flow ve-

locity, ðgbDTLÞ1=2 (assuming Ar ¼ 1 for simplicity), with

that for thermocapillary flow, rTDT=l, the ratio can be

expressed as Gr1=2=Rr. The parameter is less than 0.1 in

the present experiment, so buoyancy flow is relatively

weak. However, if we compare the total buoyancy,

qgbDTL2, with the total thermocapillarity, rTDT , the

ratio is Gr=Rr. The ratio Gr=Rr is larger than unity,

about 10, in the present experiment. Therefore, ther-

mocapillary flow is the main flow in the present work,

but it is significantly modified by buoyancy. This situa-

tion is similar to the condition investigated by Schwabe

and Metzger [6].

4. Numerical analysis

The steady basic flow and temperature fields for the

present configuration are numerically analyzed to help

us interpret the experimental data. The main objective is

to examine how buoyancy affects the flow field when the

fluid is heated by a thin wire at the surface. The present

numerical scheme is based on the SIMPLER algorithm

and has been used in our past thermocapillary flow

analyses (e.g. [9,10]). The Cartesian coordinate system is

used as drawn in Fig. 1. The flow field is assumed to be

two-dimensional with a flat free surface. For simplicity,

the cylindrical heater is replaced by a square heater

whose hydraulic diameter is equal to the actual heater

diameter. The bottom wall is assumed to be thermally

insulated. Although the radiative and convective heat

loss from the free surface is taken into account (see [10]),

in the present experiment, where the cold wall temper-

ature is near the ambient temperature, the loss from the

free surface is less than about 5% of the total heat

transfer rate through the liquid, so its effect on the

steady flow is not important. The fluid viscosity and

surface tension vary with temperature. The velocity and

stream function are non-dimensionalized by rTDT=l
and rTDTL=l, respectively. The temperature is non-

dimensionalized as ðT � TCÞ=DT . The Nusselt number

(Nu) is defined as the ratio of the total heat transfer rate

to the (computed) total conduction heat transfer rate.

A non-uniform grid system is employed with fine

meshes around the heater. For a typical condition of

L ¼ H ¼ 1:0 cm and DT ¼ 10 �C with 2 cSt oil (Ma ¼
6:0� 104, Gr ¼ 3:0� 104, Pr ¼ 27:1, and Ar ¼ 1), which

is close to the onset of oscillations, the values of maxi-

mum dimensionless stream function computed with

three different grids, 56 (x-direction)� 51 (y-direction),

90� 80, and 130� 120 with the smallest mesh sizes next

to the heater of 3� 10�4, 1� 10�4, and 5� 10�5, re-

spectively, are 1:12� 10�3, 1:03� 10�2, and 1:02� 10�2.

The values of Nu are 8.89, 8.68, and 8.68, respectively.

Therefore, the 90� 80 grid system is employed in the

present analysis.
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5. Results and discussions

5.1. Steady flow

At first, flow visualization was conducted by adding

small particles to the fluid to investigate the steady flow

structure. The flow visualization shows two distinct re-

gions, a nearly stagnant region beneath an active flow

region. The fluid is heated only near the free surface, so

that the hot fluid convected out of the heated region,

mainly by thermocapillary flow, tends to stay near the

free surface due to buoyancy, which causes a thermal

stratification. This thermal stratification confines the

active flow field and is an important feature of the pre-

sent work. As discussed earlier, pure buoyancy-driven

flow is much weaker than thermocapillary flow in the

present work, since the ratio Gr1=2=Rr is less than unity.

Moreover, since the fluid is heated by a thin wire at the

top, buoyancy acts only in a limited region. For exam-

ple, according to the present numerical analysis for

Ar ¼ 1, the maximum stream function for buoyancy-

driven flow alone is generally less than 5% of that for

thermocapillary flow alone. Thus, the main effect of

buoyancy is to alter the thermocapillary flow by strati-

fication, as discussed earlier.

Typical computed streamline and isotherm patterns

are shown in Fig. 2. The flow pattern, showing an active

recirculating flow only in the top half of the container, is

found to agree well with the flow visualization. There

appears a weak counter-clockwise recirculation cell

below the main flow cell, the former being driven by the

latter against buoyancy. The overall flow field agrees

well with the flow pattern picture shown in Schwabe and

Metzger [6] when only the top portion of the fluid is

heated. An important feature of the thermal field is that

the hot fluid is convected along the free surface, turns

the cold corner and is pushed downward along the cold

wall, which is eventually stopped by buoyancy, thereby

limiting the region where the flow is active.

The computed temperature distributions in the fluid

are compared with the experimental data in Fig. 3 for

Ar ¼ 0:8: They agree well. Similar agreement is also

Fig. 2. Computed streamline and isotherm patterns for Ma ¼ 6:0� 104, Gr ¼ 3:0� 104, Pr ¼ 24:5, Ar ¼ 1, and Hr ¼ 0:035.

Fig. 3. Comparison between numerical and experimental temperature distributions (Ma ¼ 6:0� 104, Gr ¼ 3:0� 104, Pr ¼ 27:1,

Ar ¼ 0:8, and Hr ¼ 0:035).
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found in other situations, so the present numerical

simulations represent the actual tests well. Fig. 3 shows

that the fluid temperature is nearly uniform in each of

the active and stagnant regions, with large gradients in

between.

Since the active flow region does not extend to the

bottom when the fluid is deep, container depth H is not

important for the flow in this situation. Thus, it is im-

portant to know how far the active flow field extends

under various conditions in order to understand the

basic flow field. Scaling analysis is performed to deter-

mine this thermal penetration length (H �). As discussed

above, buoyancy opposes the main flow as hot fluid

penetrates into the stagnant region along the cold wall.

Since buoyancy and thermocapillarity do not act in the

same direction, we relate them through the vorticity

equation. For two-dimensional steady flow the dimen-

sional vorticity equation is

u
of
ox

þ v
of
oy

¼ m
o2f
ox2

�
þ o2f
oy2

�
þ gb

oT
ox

ð1Þ

Thermocapillarity is felt by the flow through the viscous

term in the y-direction (mo2f=oy2). Then, this viscous

term should be balanced by the buoyancy term. The

viscous term scales as mUr=H �3, where Ur is the charac-

teristic dimensional velocity of the flow in the x-direc-

tion, and the buoyancy term scales as gbDT=L. Then, by
equating them one obtains H � 
 ðmLUr=gbDT Þ1=3. From
our earlier analysis for thermocapillary flow [11], we

know that the velocity distribution along the free surface

has a peak near the hot wall, and this peak velocity (U0)

represents the characteristic velocity of the overall flow

because the flow is driven mainly near the hot wall in the

case of high Pr fluid. Our analysis also shows that this

velocity scales mainly with rTDT=l and only weakly on

Ma, or the dimensionless velocity scale is nearly con-

stant. Then if we neglect the dependence on Ma, we

obtain the following scaling law for H �:

H �=L 
 ðrT=qgbL2Þ1=3 ¼ ðRr=GrÞ1=3 ð2Þ

The peak velocities computed under various conditions

are shown in Fig. 4. As will be discussed later, the onset

of oscillations occurs in the range ofMa between 5� 104

and 2� 105 in the present experiment. In this range of

Ma, the dimensionless U0 is nearly constant and depends

only very weakly on Ma (roughly Ma�0:07), as mentioned

above. One important feature of the flow field can be

seen by comparing the maximum stream function

(Wmax), which represents the overall volume flux in the

flow cell, in normal gravity and that in zero gravity. As

shown in Fig. 5, since the flow extends to the bottom

wall in zero-g, Wmax is much larger than in one-g. In one-

g, buoyancy limits the flow field in such a way that Wmax

is nearly constant in the present experimental range of

Ar (ArP 0:4). Fig. 5 also shows that when the fluid is

very shallow (Ar < 0:4), buoyancy has no appreciable

effect on the flow.

As seen in Fig. 4, U0 is not affected by Pr, which

means the flow is viscous-dominated. The fact that Wmax

is a function of Pr in Fig. 5 is not due to the inertia

forces. The difference is partially due to the difference in

H � between the two fluids for the condition of Fig. 5 and

partly due to the difference in viscosity variations. For

the conditions of Fig. 5, the overall viscosity variation

from the hot to cold walls is about 8% for the 2 cSt fluid,

while the variation is 51% for the 5 cSt fluid.

In order to determine H � from the numerical simu-

lations, we define it as follows. By examining the iso-

therm and streamline patterns and the temperature

distributions in the fluid, such as shown in Figs. 2 and 3,

we notice that the isotherms having a dimensionless

temperature of between 0.2 and 0.4 are always located

in the region of large vertical temperature gradients,

Fig. 4. Maximum free surface velocity near hot wall.

Fig. 5. Maximum stream function versus Ar in one-g and

zero-g.
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namely along the interface of active and stagnant re-

gions. For this reason, from the isotherm pattern for a

given condition, we define the distance between the free

surface and the lowest location of the 0.2 isotherm as the

thermal penetration length H � for this condition in the

present work. The values of H � determined under vari-

ous conditions are presented in Fig. 6, which shows that

the above scaling law for H � agrees well with the nu-

merical results. H � is a weak function of Pr due to the

difference in the overall viscosity variation, as discussed

above. When the parameter Rr=Gr becomes very small

or very large, buoyancy flow or thermocapillary flow

eventually dominates and the flow extends to the bot-

tom, so no H � exists. Therefore, H � exists only when the

parameter (Rr=GrÞ1=3 is roughly of order unity.

According to Eq. (2), H � does not depend on DT ,
which we observe experimentally. In the present exper-

iment, the parameter ðrT=qgbL2Þ1=3 ranges between 0.42

and 0.51, so H � is about half of the container depth for

Ar ¼ 1. As seen in Figs. 4 and 6, within the range of the

heater ratio of the present experiment (Hr ¼ 0:033 �
0:047), Hr does not affect the scaling laws appreciably.

Therefore, we can neglect the heater size effect on these

quantities in the present experiment. For later use, we

express H � as

H �=L ¼ CðrT=qgbL2Þ1=3 ð3Þ

Based on the numerical results shown in Fig. 6, the

values of C are 1.2 and 1.1 for the 2 and 5 cSt fluids,

respectively.

When the fluid depth becomes smaller (decreasing

Ar), the flow cell eventually reaches the bottom wall.

Based on the flow visualization and numerical simula-

tions, a part of the main flow cell touches the bottom

wall below Ar of about 0.8 in the present experiment.

Since the main cell extends to about the mid-depth for

Ar ¼ 1, the bottom wall effect becomes very significant

below Ar ¼ 0:5.

5.2. Oscillatory flow

As the temperature difference is increased, the flow

field remains two-dimensional (except very near the side

walls) according to the flow visualization. Then, at a

certain DT , the flow transitions to oscillatory flow. The

temperature difference at this transition is called the

critical temperature difference, DTcr. Beyond DTcr, tem-

perature oscillations with nearly sinusoidal pattern are

observed. The values of DTcr measured under various

conditions are plotted in Fig. 7. The figure shows that

DTcr is nearly proportional to the fluid viscosity. For a

given fluid, DTcr is a function of mainly H and is nearly

independent of L. Although the data scatters, the gen-

eral trend of DTcr with increasing H for a given fluid is as

follows. When the fluid is shallow (Ar near 0.4), DTcr
is not sensitive to H. Then with increasing H, DTcr
decreases but when the fluid becomes deep enough

(roughly Ar > 0:8), DTcr becomes independent of the

depth. Although the ratio of the container length (W) to

the liquid depth is relatively small near Ar ¼ 1, about 6,

the fact that DTcr is not affected by the liquid depth near

Ar ¼ 1 implies that the container length has no appre-

ciable effect on the onset of oscillations.

The oscillatory flow pattern is visually investigated.

From the flow visualization it is observed that the steady

two-dimensional flow changes to the oscillatory flow

that has a three-dimensional structure. Fig. 8 presents

sketches of the oscillatory flow pattern from the side and

top. When the oscillatory flow occurs, two different flow

structures are observed and each of them appears peri-

odically. Based on the side view, one is strong thermo-

Fig. 6. Thermal penetration length scale.

Fig. 7. Critical temperature differences under various condi-

tions.
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capillary flow that extends all the way to the cold wall,

and the other is weak thermocapillary flow that recir-

culates only near the heater. These two strong and weak

periods are similar to those observed in the half-zone

configuration [11].

From the top view, these strong and weak structures

are arranged periodically in the spanwise direction at

any given time. Also, at a given spanwise location the

flow structure variation is exactly out of phase across the

heater. During the weak period, the flow rate decreases

as the fluid moves towards the cold wall, so the flow

passage narrows when it is viewed from the top. The

opposite happens during the strong period. Also in Fig.

8, the strong and weak patterns appear alternately at the

same location, which suggests that no thermal wave is

propagating in the spanwise direction. The wavelength

of the spanwise pattern is about 1.5 cm in the present

experiment. Thus, the container length is four times of

this wavelength, which explains why the container

length has no appreciable effect on the onset of oscilla-

tions in the present experiment.

One interesting feature of the oscillatory flow is that

during the strong period, we observe strong downward

motion along the cold wall (see Fig. 8), which pushes the

interface between the flow cell and the stagnant region

downward near the cold wall. The interface moves up

during the weak period. This up-and-down motion of

the interface does not decay immediately, instead this

motion continues, with diminishing amplitude, as the

fluid moves from the cold wall region toward the heater

region. As a result, the interface becomes wavy during

oscillations. Since the vertical temperature gradients are

relatively large across the interface, this up-and-down

motion causes large temperature oscillations near the

interface. The RMS temperature oscillation levels mea-

sured at various locations are shown in Fig. 9. As seen in

the figure, at a given x-location, the oscillation level is

highest well inside the fluid, and the maximum temper-

ature oscillation point goes deeper into the fluid with

increasing x, following the location of the interface.

Note that if the inertia forces are strong in the main cell,

this interface phenomenon may lead to a Kelvin–

Helmholtz type instability.

Fig. 10 shows how the dimensionless RMS temper-

ature oscillation level varies with increasing temperature

difference beyond the critical point for various aspect

ratios. The oscillation level shown in the figure is the

maximum oscillation level at x=L ¼ 0:4. When Ar is near

unity, the oscillation level increases sharply with in-

creasing DT , but when Ar is near 0.5, the increase is

more gradual. Therefore, the bottom wall not only de-

lays the onset of oscillations but it also limits the oscil-

lation activities. It is also found that the bottom wall

decreases the oscillation frequency (about 0.15 Hz for

Ar ¼ 0:4 compared to 0.38 Hz for Ar ¼ 1 with 2 cSt

fluid) and distorts the oscillation pattern.

Fig. 8. Sketches of oscillatory flow structure.

Fig. 9. Temperature oscillation level variations with depth at

various x locations (Ma ¼ 1:2� 104, Gr ¼ 3:8� 104, Pr ¼ 24:5,

Ar ¼ 0:83, DT=DTcr ¼ 1:8).
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Based on all of this information, we can discuss the

oscillation mechanism. When Ar is near 0.4, buoyancy

has no appreciable effect on the flow, as discussed ear-

lier. Therefore, the oscillation phenomenon near this Ar

is associated mainly with thermocapillary flow. With

increasing Ar, the oscillatory flow is modified by buoy-

ancy. Note that although the viscous retardation effect

from the bottom wall decreases as Ar increases, this

effect is not directly affecting the oscillation phenomenon

since the overall flow velocity does not change with Ar

(see Figs. 4 and 5). Instead, the bottom wall effect is felt

through the aforementioned interaction between the

downward flow and buoyancy near the cold wall. This

interaction, which plays an important role in the oscil-

lation mechanism, is made easier as the fluid becomes

deeper, which explains why DTcr decreases with in-

creasing H until the main flow cell is no longer affected

by the bottom wall.

Since the oscillatory flow in the present work is ba-

sically caused by thermocapillarity and its structure is

similar to that found in the half-zone configuration, we

can utilize the information for that configuration to

construct a physical model with buoyancy. The basic

oscillation process can be described as follows. One os-

cillation cycle consists of a strong period and a weak

period. During the strong period, the flow cell extends to

the cold wall so that the heat transfer at the cold wall is

increased, which produces colder return flow. When this

colder fluid arrives at the heater region, the free surface

temperature begins to decrease in this region, which ends

the strong period. In the weak period, the heat transfer

at the cold wall is small, so the return flow to the heated

region is relatively warm, which subsequently heats the

free surface and ends the weak period. Now, this basic

oscillation process is aided by buoyancy as follows. In

the strong period, as the warm fluid is transported to the

cold wall region and then turns downward, buoyancy

acts to retard the flow near the cold wall. Consequently,

the strong flow cell begins to shrink and the slow period

starts (see Fig. 8). In the weak period, the fluid that

comes near the cold wall is relatively cold, so the flow in

this region is eventually revived by buoyancy and the

flow cell becomes large again. Therefore, the activity

near the cold wall associated with buoyancy is aug-

menting the oscillation process.

Since the convection across the container determines

the oscillation period according to the above oscillation

process, the frequency of oscillations should scale as

Ur=L. As discussed earlier, Ur scales as rTDT=l. If we
consider the average velocity around x=L ¼ 0:5 as the

mean convection velocity in the container, the numerical

analysis shows that the average velocity is about

0.01rTDT=l. Then, the frequency scales as 0.01rTDT=lL
(since this scaling law is for steady flow, we can use this

expression only very near the onset of oscillations). For

a typical condition of L ¼ H ¼ 1:0 cm with 2 cSt fluid,

the measured oscillation frequency is 0.38 Hz near

DTcr ¼ 10:8 �C. According to the scaling law, the esti-

mated frequency is 0.44 Hz, which reasonably agrees

with the measured value.

The flow becomes oscillatory when the convection

becomes important, so we correlate the critical condi-

tions by the appropriate convection parameter. When

the fluid layer is deep, length scale H � limits the lateral

extent of the flow and there exist relatively large vertical

temperature gradients along the interface (Fig. 3). Then,

the appropriate convection parameter is the ratio of the

convection in the x-direction, represented by UrDT=L,
and the conduction in the y-direction, represented by,

aDT=H �2. The ratio can then be expressed as Ma� ¼
MaðH �=LÞ2, called the modified Marangoni number

herein. H � represents the effect of buoyancy. On the

other hand, when Ar is small (near 0.4), buoyancy is

small, and no large vertical temperature gradients exist

in the bulk flow. In this situation, the appropriate con-

vection parameter is justMa. Therefore, we correlate the

critical conditions for small and large Ar differently.

The values of DTcr are non-dimensionalized asMa�cr in
Fig. 11 for ArP 0:8 and as Macr for small Ar in Fig. 12.

For Fig. 11, the expression for H � given by Eq. (3) is

used. Although the data tends to scatter, the critical

conditions seem to be correlated by the convection pa-

rameters reasonable well, which supports the above

discussions on the basic flow structure and the oscilla-

tion mechanism.

It is interesting to compare the oscillatory flow in-

vestigated herein with that observed in a two-dimen-

sional cavity with heated and cooled end walls. In the

cavity configuration, the heater size, relative to the cold

wall size, is much larger than that in the present work.

As a result, buoyancy-driven flow is stronger relative to

thermocapillary flow for a given DT . Thus, under similar

conditions as in the present experiment, the overall flow

Fig. 10. Temperature oscillation levels with increasing DT for

various Ar.
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is active over most of the cavity, so no distinct two-layer

structure appears. However, at a larger DT (smaller

Gr1=2=Rr) the flow cell driven mainly by thermocapil-

larity appears distinctly near the top, as in the present

work [6]. In the cavity configuration, the steady two-

dimensional flow changes, with increasing DT , to three-

dimensional steady flow. This transition occurs around

Rr of 104 for Pr ¼ 10 and for Ar of about unity [3]. This

flow consists of the main flow from the hot to cold walls

and stationary longitudinal rolls. With a further increase

in DT , this three-dimensional flow becomes oscillatory

around Rr of 2� 104 for Ar near unity when the cavity

is large in length [8]. In comparison, in the present

configuration, the flow becomes unstable at Rr of

around 2� 103 for Ar near unity. Apparently, the fact

that there is no large hot wall in the present configura-

tion makes the flow more susceptible to instability. Since

Rr is large for the oscillatory flow in cavity, the oscil-

lation mechanism is strongly affected by inertia forces.

Sakurai et al. [8] mentions that the oscillation occurs as

the rolls go into a wave-like motion. Based on the ex-

periment with shallow enclosures (Ar6 0:5) where the

cavity length is equal to the width, Braunsfurth and

Homsy [7] describes the oscillation process in which a

small eddy close to the hot wall oscillates in both size

and strength. In contrast, the present oscillation phe-

nomenon is similar to that in the half-zone configura-

tion, in which inertia forces do not play an important

role [11].

6. Conclusions

An experiment has been conducted to study com-

bined thermocapillary and natural convection in rect-

angular containers with high Prandtl number fluids. The

fluid is heated by a thin wire. The work is supplemented

by a numerical analysis. The following conclusions can

be drawn from the work:

(1) In the present experiment, buoyancy acts in such a

way that the main recirculating flow cell due to ther-

mocapillarity is pushed upward, and it does not in-

teract with the bottom wall when the aspect ratio

is larger than about 0.8. The size of this flow cell

due to thermal stratification is determined by scaling

analysis. The scaling law agrees well with the numer-

ical result.

(2) The flow remains two-dimensional until it becomes

oscillatory at a certain DT . The oscillatory flow

has a three-dimensional structure with periodic

spanwise variation. The flow undergoes strong and

weak periods in one cycle of oscillation. The oscilla-

tion level is highest along the interface between the

main flow cell and the stagnant region below it.

(3) The oscillations are caused by strong convection

within the flow cell. The modified Marangoni num-

ber (Ma�) is derived for deep fluid, representing the

convection and including the effect of the thermal

stratification. Ma�cr correlates the experimental criti-

cal conditions well.
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